Homework 7

P6.2.8 Determine V_{o} in Figure P6.2.8.

Solution: The linear-output current source is transformed to its equivalent voltage source. The mesh current equations are:
Mesh 1: $7 I_{1}-I_{2}-2 I_{3}=80$
Mesh 2: $-I_{1}+7 I_{2}-2 I_{3}=0$
Mesh 3: $-2 I_{1}-2 I_{2}+4 I_{3}=40$
Solving these equations gives $\Lambda_{1}=$ $20 \mathrm{~A}, I_{2}=10 \mathrm{~A}$, and $I_{3}=25 \mathrm{~A}$. It follows that $V_{O}=4 I_{2}=40 \mathrm{~V}$.

Figure P6.2.8-1

P6.2.12 Determine V_{o} in Figure P6.2.12.
Solution: The mesh-current equations are:
Mesh 1: $30 l_{1}-10 l_{2}-20 l_{3}=40$
Mesh 2: $-10 l_{1}+20 I_{2}=-20$
Mesh 3: $I_{3}=0.5 I_{0}=0.5\left(l_{1}-I_{2}\right)$
Solving these equations gives $I_{1}=2 \mathrm{~A}$,
$I_{2}=0$, and $I_{3}=1 \mathrm{~A}$. It followshat $V_{O}=10 I_{O}=20 \mathrm{~V}$.

Figure P6.2.12

Figure P6.2.12-1

P6.2.22 Determine V_{O} in Figure P6.2.22, assuming all resistances are 2Ω.
$I_{X}=I_{3}-I_{1}=-0.5 \mathrm{~A}$ and $V_{Y}=20 I_{2}=-10 \mathrm{~V}$.
Solution: The redundant resistor in series with the 5 A current source is removed, and the CCVS is replaced by a 0.5Ω resistor. Moreover, it is necessary to remove the "hidden mesh" involving the two grounds. To do so, it is noted that the two bottom 2Ω resistors are in parallel, so they form a 1Ω resistor in series with the 2Ω resistor, the circuit becoming as shown. The mesh-current equations are:
Mesh 1: $l_{1}=5$
Mesh 2: $4.5 I_{2}-2 I_{4}=10$
Mesh 3: $-2 I_{1}+7 I_{3}-3 I_{4}=0$
Mesh 4: $I_{4}=-0.5 I_{x}=-0.5\left(I_{1}-I_{2}\right)$, or, $0.5 I_{1}-0.5 I_{2}$
$+I_{4}=0$

Solving these equations gives $I_{2}=10 / 7 \mathrm{~A}, I_{3}=65 / 98 \mathrm{~A}$, and $I_{4}=-25 / 14 \mathrm{~A}$. It follows that $V_{O}=2\left(I_{3}-I_{1}\right)=-425 / 49=-8.67 \mathrm{~V}$.

P6.2.23 Determine V_{x} in Figure P6.2.23.
Solution: The mesh-current equations are:
Mesh 1: 60 $I_{1}-40 I_{2}=V_{Y}$
Mesh 3: $10 I_{3}=-V_{Y}-5 I_{\phi}$, where $I_{\phi,}=I_{2}$.
Adding these two equations and substituting for l_{ϕ} :

$$
60 I_{1}-35 I_{2}+10 I_{3}=0
$$

For the 5 A source, $I_{1}-I_{3}=5$
Mesh 2: $-40 I_{1}+50 I_{2}=V_{x}$
Mesh 4: $20 I_{4}=5 I_{\phi}-V_{X}$. Adding these two equations and substituting for I_{ϕ} :

$$
-40 l_{1}+45 l_{2}+20 l_{4}=0
$$

For the dependent current source, $2 I_{x}=I_{4}-I_{2}$, where $I_{x}=I_{1}$, or, $2 l_{1}+I_{2}-$ $I_{4}=0$. Solving these equations gives $I_{1}=$

Figure P6.2.23

Figure P6.2.23-1
$5 / 7 \mathrm{~A}, I_{2}=0, I_{3}=-30 / 7$, and $I_{4}=10 / 7$. It follows that $V_{x}=40\left(I_{2}-I_{1}\right)+10 I_{2}=-40 I_{1}=$ $-200 / 7=-28.57 \mathrm{~V}$.

P7.1.8 The voltage waveform shown in Figure P7.1.8 is applied to a $1 \mu \mathrm{~F}$ capacitor. Determine the value of the current through the capacitor.
Solution: The maximum capacitor current occurs on the steeper region of the voltage waveform. $i=C d v / d t=10^{-6} \times(2 \mathrm{~V} / 0.5 \mathrm{~s})=4 \mu \mathrm{~A}$.

P7.1.10 When the switch is closed in Figure P7.1.10, a current i flows that charges the capacitor. After a sufficiently long time, the capacitor is fully charged to 2 V . Determine, when the capacitor is fully charged: (a) the energy stored in the capacitor;

Figure P7.1.10
(b) the total energy delivered by the battery, by considering the total charge delivered by the battery.
Soution: (a) When the final voltage is 2 V , the energy stored in the capacitor is $(1 / 2) \times 2 \times 10^{-6} \times 4=4 \mu \mathrm{~J}$.
(b) The total energy supplied by the battery is $w(\infty)=$
$\int_{0}^{\infty} 2 i d t=2 \int_{0}^{\infty} i d t=2 q(\infty)=2 \times 2 \times 10^{-6} \times 2=$

Figure P7.1.10 $8 \mu \mathrm{~J}$.

P7.1.15 The triangular
voltage pulse of
Figure P7.1.15 is
applied to an initiallyuncharged $0.1 \mu \mathrm{~F}$

Figure P7.1.15
capacitor. Plot as functions of time: (a) the charge on the capacitor; (b) the energy stored in the capacitor, (c) the instantaneous power input to the capacitor.

Solution: $v(t)=\frac{t}{6} \mathrm{~V}, 0 \leq t \leq 60 \mathrm{~s} ; v(t)=-\frac{t}{18}+\frac{40}{3} \mathrm{~V}, 60 \leq t \leq 240 \mathrm{~s} ; v(t)=0, t \geq 240 \mathrm{~s}$.
(a) $q(t)=\frac{t}{60} \mu \mathrm{C}$,
$0 \leq t \leq 60$ s;
$q(t)=-\frac{t}{180}+\frac{4}{3} \mu \mathrm{C}$,
$60 \leq t \leq 240$ s; $q(t)=0$,

Figure P7.1.15-1
s.
(b) $w(t)=\frac{1}{2} q v=\frac{t^{2}}{720} \mu \mathrm{~J}$,
$0 \leq t \leq 60 \mathrm{~s} ; w(t)=$
$=\frac{1}{180}\left(\frac{t^{2}}{36}-\frac{40 t}{3}+1600\right)$

Figure P7.1.15-2
$\mu \mathrm{J}$,
$60 \leq t \leq 240 \mathrm{~s} ; w(t)=0, t \geq 240 \mathrm{~s}$.
(c) $i(t)=\frac{d q}{d t}=\frac{1}{60} \mu \mathrm{~A}$,
$0<t<60 \mathrm{~s}$; $i(t)$
$=-\frac{1}{180} \mu \mathrm{~A}, 60<t<240 \mathrm{~s}$;

Figure P7.1.15-3
$i(t)=0, t>240 \mathrm{~s}$, where $\frac{1}{60} \mu \mathrm{~A}$ may also be expressed as $1 \mu \mathrm{C} / \mathrm{min}$.
(d) $p(t)=v i=\frac{t}{360} \mu \mathrm{~W}$,

$$
p, \mu \mathrm{~W}
$$

$$
\begin{aligned}
& 0 \leq t \leq 60 \mathrm{~s} ; p(t)= \\
& \frac{1}{180}\left(\frac{t}{18}-\frac{40}{3}\right) \mu \mathrm{W} \\
& 60 \leq t \leq 240 \mathrm{~s} ; p(t)=0, \\
& t \geq 240 \mathrm{~s}, \text { where } \frac{1}{6} \mu \mathrm{~W} \text { may }
\end{aligned}
$$

Figure P7.1.15-4
expressed as $10 \mu \mathrm{~J} / \mathrm{min}$.
It is seen that $w(t)=\int p d t$. Thus $\int_{0}^{t} \frac{t}{360} d t=\frac{t^{2}}{720} \mu \mathrm{~J}, 0 \leq t \leq 60 \mathrm{~s}$. At $t=60 \mathrm{~s}$,
$w(t)=5 \mu \mathrm{~J}$. For $60 \leq t \leq 240 \mathrm{~s} w(t)=\int_{60}^{t} \frac{1}{180}\left(\frac{t}{18}-\frac{40}{3}\right) d t+5$
$=\frac{1}{180}\left(\frac{t^{2}}{36}-\frac{40 t}{3}+1600\right) \mu \mathrm{J}$.

P7.1.16 The current waveform of

Figure P7.1.16 is applied to an initiallyuncharged $0.5 \mu \mathrm{~F}$ capacitor. (a)
Derive expressions,

Figure P7.1.16 as functions of time, for the voltage across the capacitor during the time intervals: $0 \leq t \leq 10 \mu \mathrm{~s}, 10 \leq t \leq 40 \mu \mathrm{~s}, 40 \leq t \leq 60 \mu \mathrm{~s}, 60 \leq t \leq 80 \mu \mathrm{~s}$, and $t>80 \mu \mathrm{~s}$. (b) What is the charge on the capacitor at $t=10 \mu \mathrm{~s}$ and at $t=50 \mu \mathrm{~s}$? Check the final value of voltage against the final charge. (c) What is the energy stored in the capacitor at $t=80 \mu \mathrm{~s}$? (d) How do the expressions for the voltage across the capacitor derived in (a) above change it the capacitor was initially charged to 0.5 V ?

Solution: $v(t)=\frac{1}{C} \int_{t_{0}}^{t} i d t+V\left(t_{0}\right)$
(a) $0 \leq t \leq 10 \mu \mathrm{~s}$:
$v(t)=\frac{1}{0.5} \int_{0}^{t} 1.5 t d t=$
$1.5 t^{2} \mathrm{mV}$, where t is in $\mu \mathrm{s}$. At $t=10 \mu \mathrm{~s}, v(t)=$ 150 mV .

$10 \leq t \leq 40 \mu \mathrm{~s}: v(t)=\frac{1}{0.5} \int_{10}^{t}(-t+25) d t+150$ $=\left[-t^{2}+50 t\right]_{10}^{t}+150=-t^{2}+50 t-250 \mathrm{mV}$. At $t=40 \mu \mathrm{~s}, v(t)=150 \mathrm{mV}$. $40 \leq t \leq 60 \mu \mathrm{~s}: v(t)=\frac{1}{0.5} \int_{40}^{t}-15 d t+150=[-30 t]_{40}^{t}+150=-30 t+1350 \mathrm{mV}$.

At $t=60 \mu \mathrm{~s}, v(t)=-450 \mathrm{mV}$.
$60 \leq t \leq 80 \mu \mathrm{~s}: v(t)=\frac{1}{0.5} \int_{60}^{t}(0.75 t-60) d t-450=\left[0.75 t^{2}-120 t\right]_{60}^{t}-450=$
$0.75 t^{2}-120 t+4050 \mathrm{mV}$. At $t=80 \mu \mathrm{~s}, v(t)=-750 \mathrm{mV}$.
$t \geq 80 \mu \mathrm{~s}: v=-750 \mathrm{mV}$.
Check: Total area $=0.5 \times 15 \times 10+0.5 \times 15 \times 15-0.5 \times 15 \times 15-15 \times 20-$ $0.5 \times 15 \times 20=-375 \mathrm{nC}$. Hence $v=\frac{-375}{0.5}=-750 \mathrm{mV}$.
(b) At $t=10 \mu \mathrm{~s}, v(t)=150 \mathrm{mV}$, so $q=C V=75 \mathrm{nC}$.

At $t=50 \mu \mathrm{~s}, v(t)=-150 \mathrm{mV}$, so $q=C V=-75 \mathrm{nC}$.
(c) At $t=80 \mu \mathrm{~s}, v(t)=-750 \mathrm{mV}$, so $w=\frac{1}{2} C v^{2}=0.14 \mu \mathrm{~J}$.
(d) All the expressions derived above for the voltage are increased by 0.5 V .

