Homework 7

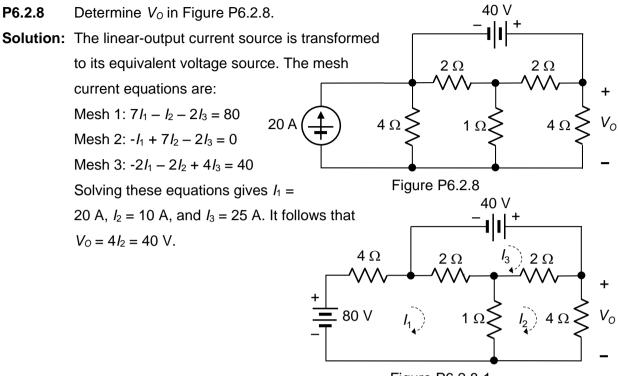


Figure P6.2.8-1

 P6.2.12
 Determine V_0 in Figure P6.2.12.

 Solution:
 The mesh-current equations are:

 Mesh 1: $30I_1 - 10I_2 - 20I_3 = 40$

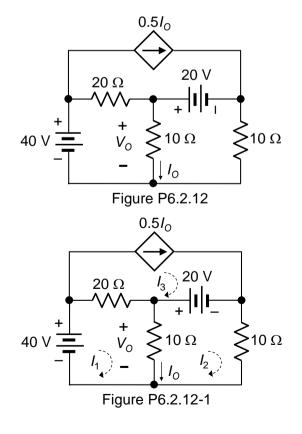
 Mesh 2: $-10I_1 + 20I_2 = -20$

 Mesh 3: $I_3 = 0.5I_0 = 0.5(I_1 - I_2)$

 Solving these equations gives $I_1 = 2A$,

 $I_2 = 0$, and $I_3 = 1$ A. It followshat

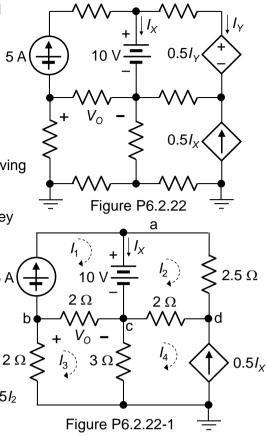
 $V_0 = 10I_0 = 20$ V.



P6.2.22 Determine V_0 in Figure P6.2.22, assuming all resistances are 2 Ω.

 $I_X = I_3 - I_1 = -0.5 \text{ A and } V_Y = 20I_2 = -10 \text{ V}.$

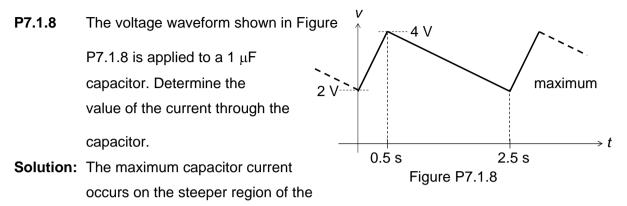
Solution: The redundant resistor in series with the 5 A current source is removed, and the CCVS is replaced by a 0.5 Ω resistor. Moreover, it is necessary to remove the "hidden mesh" involving the two grounds. To do so, it is noted that the two bottom 2 Ω resistors are in parallel, so they form a 1 Ω resistor in series with the 2 Ω resistor, the circuit becoming as shown. 5 A The mesh-current equations are: Mesh 1: $I_1 = 5$ Mesh 2: $4.5I_2 - 2I_4 = 10$ 2Ω Mesh 3: $-2I_1 + 7I_3 - 3I_4 = 0$ Mesh 4: $l_4 = -0.5l_x = -0.5(l_1 - l_2)$, or, $0.5l_1 - 0.5l_2$ $+ I_4 = 0$



follows that $V_0 = 2(I_3 - I_1) = -425/49 = -8.67$ V. Determine V_X in Figure P6.2.23. P6.2.23 I_{x} **Solution:** The mesh-current equations are: **20** Ω 40 Ω 10 Ω $2I_{x}$ Mesh 1: $60I_1 - 40I_2 = V_Y$ Mesh 3: $10I_3 = -V_Y - 5I_{\phi}$, where $I_{\phi} = I_2$. Adding these two equations 5 A 10 Ω **> 20** Ω and substituting for I_{ϕ} : 51 $60I_1 - 35I_2 + 10I_3 = 0$ For the 5 A source, $I_1 - I_3 = 5$ Figure P6.2.23 Mesh 2: $-40I_1 + 50I_2 = V_X$ **40** Ω Mesh 4: $20I_4 = 5I_{\phi} - V_X$. Adding **20** Ω 10 Ω $2I_{x}$ these two equations and substituting for I_{ϕ} : $-40l_1 + 45l_2 + 20l_4 = 0$ 5 A 10 Ω 20 Ω For the dependent current source, 5 $2I_X = I_4 - I_2$, where $I_X = I_1$, or, $2I_1 + I_2 - I_3$ $I_4 = 0$. Solving these equations gives $I_1 =$ Figure P6.2.23-1

Solving these equations gives $I_2 = 10/7$ A, $I_3 = 65/98$ A, and $I_4 = -25/14$ A. It

5/7 A, $I_2 = 0$, $I_3 = -30/7$, and $I_4 = 10/7$. It follows that $V_X = 40(I_2 - I_1) + 10I_2 = -40I_1 =$ -200/7 = -28.57 V.

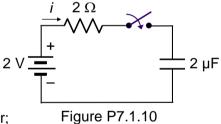


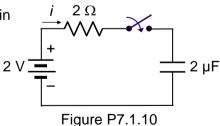
voltage waveform. $i = Cdv/dt = 10^{-6} \times (2 \text{ V}/0.5 \text{ s}) = 4 \mu\text{A}.$

P7.1.10 When the switch is closed in Figure P7.1.10, a current *i* flows that charges the capacitor. After a 2 \ sufficiently long time, the capacitor is fully charged to 2 V. Determine, when the capacitor is fully charged: (a) the energy stored in the capacitor; (b) the total energy delivered by the battery, by considering the total charge delivered by the battery.

- Soution: (a) When the final voltage is 2 V, the energy stored in the capacitor is $(1/2) \times 2 \times 10^{-6} \times 4 = 4 \mu J$.
 - (b) The total energy supplied by the battery is $W(\infty) =$

$$\int_{0}^{\infty} 2idt = 2\int_{0}^{\infty} idt = 2q(\infty) = 2 \times 2 \times 10^{-6} \times 2 = 8 \text{ } \mu\text{J}.$$





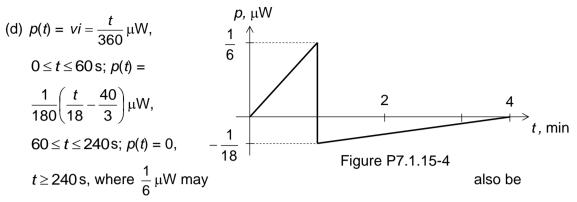
P7.1.15 The triangular v, Vvoltage pulse of Figure P7.1.15 is applied to an initiallyuncharged 0.1 μ F Figure P7.1.15

capacitor. Plot as functions of time: (a) the charge on the capacitor; (b) the energy stored in the capacitor, (c) the instantaneous power input to the capacitor.

Solution:
$$v(t) = \frac{t}{6} \vee, 0 \le t \le 60 \text{ s}; v(t) = -\frac{t}{18} + \frac{40}{3} \vee, 60 \le t \le 240 \text{ s}; v(t) = 0, t \ge 240 \text{ s}.$$

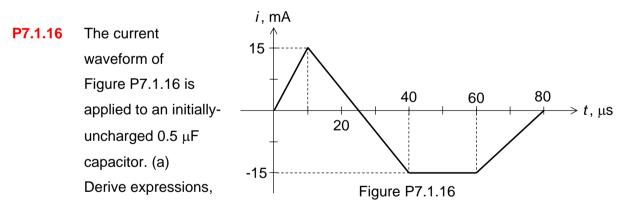
(a) $q(t) = \frac{t}{60} \mu C,$
 $0 \le t \le 60 \text{ s};$
 $q(t) = -\frac{t}{180} + \frac{4}{3} \mu C,$
 $60 \le t \le 240 \text{ s}; q(t) = 0,$
 $s.$
(b) $w(t) = \frac{1}{2} qv = \frac{t^2}{720} \mu J,$
 $0 \le t \le 60 \text{ s}; w(t) =$
 $= \frac{1}{180} \left(\frac{t^2}{36} - \frac{40t}{3} + 1600 \right)$
 $\mu J,$
 $60 \le t \le 240 \text{ s}; w(t) = 0, t \ge 240 \text{ s}.$
(c) $i(t) = \frac{dq}{dt} = \frac{1}{60} \mu A,$
 $0 \le t \le 60 \text{ s}; i(t)$
 $= -\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, 60 < t < 240 \text{ s};$
 $-\frac{1}{180} \mu A, -\frac{1}{180} \mu A, -$

i(t) = 0, t > 240 s, where $\frac{1}{60} \mu$ A may also be expressed as 1 μ C/min.



expressed as 10 µJ/min.

It is seen that $w(t) = \int p dt$. Thus $\int_0^t \frac{t}{360} dt = \frac{t^2}{720} \mu J$, $0 \le t \le 60 \text{ s.}$ At t = 60 s, $w(t) = 5 \mu J$. For $60 \le t \le 240 \text{ s}$ $w(t) = \int_{60}^t \frac{1}{180} \left(\frac{t}{18} - \frac{40}{3}\right) dt + 5$ $= \frac{1}{180} \left(\frac{t^2}{36} - \frac{40t}{3} + 1600\right) \mu J.$



as functions of time, for the voltage across the capacitor during the time intervals: $0 \le t \le 10 \ \mu\text{s}$, $10 \le t \le 40 \ \mu\text{s}$, $40 \le t \le 60 \ \mu\text{s}$, $60 \le t \le 80 \ \mu\text{s}$, and $t > 80 \ \mu\text{s}$. (b) What is the charge on the capacitor at $t = 10 \ \mu\text{s}$ and at $t = 50 \ \mu\text{s}$? Check the final value of voltage against the final charge. (c) What is the energy stored in the capacitor at $t = 80 \ \mu\text{s}$? (d) How do the expressions for the voltage across the capacitor derived in (a) above change it the capacitor was initially charged to 0.5 V?

Solution:
$$v(t) = \frac{1}{C} \int_{6}^{t} dt + V(t_{0})$$

(a) $0 \le t \le 10 \ \mu\text{s}$:
 $v(t) = \frac{1}{0.5} \int_{0}^{t} 1.5t dt =$
 $1.5t^{2} \ \text{mV}$, where *t* is in
 μs . At $t = 10 \ \mu\text{s}$, $v(t) =$
 $150 \ \text{mV}$.
 $10 \le t \le 40 \ \mu\text{s}$: $v(t) = \frac{1}{0.5} \int_{10}^{t} (-t + 25) dt + 150$
 $= \left[-t^{2} + 50t \right]_{10}^{t} + 150 = -t^{2} + 50t - 250 \ \text{mV}$. At $t = 40 \ \mu\text{s}$, $v(t) = 150 \ \text{mV}$.
 $40 \le t \le 60 \ \mu\text{s}$: $v(t) = \frac{1}{0.5} \int_{60}^{t} (0.75t - 60) dt - 450 = \left[0.75t^{2} - 120t \right]_{60}^{t} - 450 =$
 $0.75t^{2} - 120t + 4050 \ \text{mV}$.
 $t \ge 80 \ \mu\text{s}$: $v(t) = \frac{1}{0.5} \int_{60}^{t} (0.75t - 60) dt - 450 = \left[0.75t^{2} - 120t \right]_{60}^{t} - 450 =$
 $0.75t^{2} - 120t + 4050 \ \text{mV}$. At $t = 80 \ \mu\text{s}$, $v(t) = -750 \ \text{mV}$.
 $t \ge 80 \ \mu\text{s}$: $v = -750 \ \text{mV}$.
(b) At $t = 10 \ \mu\text{s}$, $v(t) = 150 \ \text{mV}$, so $q = CV = -75 \ \text{nC}$.
At $t = 80 \ \mu\text{s}$, $v(t) = -150 \ \text{mV}$, so $w = \frac{1}{2}Cv^{2} = 0.14 \ \mu\text{J}$.

(d) All the expressions derived above for the voltage are increased by 0.5 V.